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Optical soliton in the presence of perturbations 
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Department of Physics, University of Jya&yla, PO BOX 35, SF-40351 Jy;iskyli. Finland 

Received 28 September 1992, in hnal form 12 May 1993 

Abstract. h the framewuorlt of the reduced Maxwell43loch (RMB) system we investigate in l o a l  
form the interaction of optical soliton with an arbitrary background held canposed of causal 
and spontaneous p m .  A non-tsivial phase shift of the soliton, is also found. 

1. Introduction 

A long standing problem in nonlinear optics has been that of properly understanding the 
behaviour of an ultrashort pulse of light in a dispersive medium (see, e.g., [l]). Despite the 
significant progress [1,2,3] made in this problem during the last two decades there are still 
interesting questions concerning interaction of localised excitations (solitons) with irregular 
background disturbances (noise) or following the terminology of the theory of scattering, the 
interaction of soliton with continuum spectrum. Such an interaction is of general physical 
significance. In nonlinear optics in particular these processes are of great importance in the 
theory of optical systems for information uansfer for example, where noise can interfere with 
localized information bearing signals. From a formal point of view such noise is a solution 
of the considered soliton bearing nonlinear equation. Thus the problem of interaction is 
that of nonlinear superposition of soliton and noise. The approach we report in this work is 
applicable to any nonlinear system as far as the system is completely integrable. This in a 
pragmaticrtl sense means that the considered nonlinear system is the compatibility condition 
of an associated linear system (zero curvature condition). Technically our approach consists 
of constructing a solution of this linear system corresponding to arbiuary background fields. 
This solution is found in the form of an asymptotic series with respect to the spechal 
parameter. Given this solution we can then apply a dressing procedure (m our work the 
Darboux !"formation method) to construct a nonlinear superposition of a soliton and the 
background in the local form, i.e. at a finite spacetime point. We may think of our approach 
as a variant of perturbation theory in the sense that perturbation of the exact solution is not 
accounted for by an extra term in the nonlinear equation but by the arbitrary background. 
A small parameter of this perturbation theory is the reciprocal of the specaal parameter. In 
order to exemplify the general method we have chosen to consider a system describing an 
interaction of an elecaic field with an active medium composed of two-level atoms. 

We assume that the dispersive medium consists of two-level atoms with resonance 
frequency 0,. Usually [2,3] the interaction of light with a two-level medium has been 
described in terms of the Maxwell-Bloch (m) equations 

EF = (p )  pz + 2iqp = N E  N; = - i ( E p  + E P )  (1.1) 
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for the complex, slowly varying amplitudes E ,  p and N of the elechic field, polarization 
and inversion, respectively. Here z = Q,(r  - x / c ) ,  5 = Qlx/c, Ql = Znnooojb'p, 
q = (o - wO)/ZG,, no is the density of atoms in the active medium, p is the dipole 
momentum matrix element of the two-level atoms, 6 is the complex conjugate of 0 and 
(.) = J_", g l ( q ) ( . )  dq an average over inhomogeneous broadening. Subscripts denote 
panial derivatives. 

It would be better, however. to work directly with dynamical variables including their 
rapidly oscillating parts, and therefore we shall adopt here the method described in [l]. This 
method which Leads to the so-called reduced Maxwell-Blwh @MB) system, has also other 
advantages over the usual MB system (see [I]). The RMB system is described by equations 

A Rybin and J limonen 

U( = - o v  ut = UJU + En n, = - E u  Ez + E 1  =n(ov) (1.2) 

where E is a real electric field, o is the resonance frequency, n(o ,  I, z) the density of 
excited atoms in the dispersive (active) medium (i.e. inversion) and u(w.  I ,  z), v ( o .  1 .  z) 
are the two components of the polarization. The symbol (.) = J,"gz(o)(,) do denotes an 
average over inhomogeneous broadening. Also, z = x / c  and a = 4 n n o l . ~ ~ / h .  

The problem to be solved is defined by specifying the initial and boundary conditions 
for the set of equations (1.2). A suitably general formulation of a similar problem was 
given in [3]. 

At I = -CO the active medium is assumed to be in a state with a given inversion 
n(o ,  f = -CO, z) = n-(w. z) and polarization a(o, I = -CO, z) = U-(@, 2). An ultrashort 
optical pulse is then introduced such that its time dependence at z = 0 is specified, 
E ( r ,  z = 0) = E&). The radiation field in  the medium is therefore a nonlinear superposition 
of two parts, the 'spontaneous' pan induced by the initial polarization at t = -a, and the 
'causal' part induced by the ulmhort optical pulse. The interaction we shall study in detail 
is that between an optical soliton and an abih;uy background field which consists of the 
two parts described above. 

In section 2 we shall 6rst re-examine the results of [31 using the formalism of the mahix 
Riemann-Hilbert problem in distinction from [31 where the Gelfand-Levitan formalism was 
used. The advantage of the present approach is that we can restore all components of the 
solution including those which are needed to describe the quantum system. Let us comment 
on this point in more detail. In the case when either the Rim system or the MB system has a 
spectral line of final width, the components of the density matrix related to the solution for 
the electric field cannot be restored from the nonlinear system itself due to inhomogeneous 
broadening. In this respect the MB system is even worse than the RMB system because 
exact resonance corresponds to the choice q = 0 and gl(q) = S(q) in the.MB system, and 
o = og and g&o) = S(o - 00) in the RME? system. Thus for the MB system it is more 
d$ficult to trace the points where frequency and inhomogeneous broadening factors should 
be inserted while deducing the correct form of the solution from a particular solution found 
for the sharp line case. This observation provides the motivation for deriving formulae for 
all components of the solution. Furthemore, it is interesting to see how the matrix Riemann- 
Hilbert formalism works in the case of a nonlinear system with a singular dispersion relation 
which is the case for the RMB system. Of course, up to minor modifications our analysis 
is completely applicable to the MB system as well. The second objective of section 2 is to 
clarify the analytical structure of the solution of the auxiliary linear system in the case of 
arbitrary background fields (coefficients of the linear problem). This solution will then be 
used section 4 to construct the one-soliton solution on an arbitraty background. 
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2. General solution of the reduced MaxweILBloch system 

The set of equations (1.2) is the compatibility condition for the (auxiliary) h e a r  problem 
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With 

i A i  
2 2 

U =--U 3 + -EUI 

v = -U - iz((m-)) 6 
4 m - A  

(2.10) 
(2.16) 

where uj, j = 1,2,3 are the usual Pauli spin mahices, A is the spebaal parameter and 

Q = u - i w .  
Q -n 

(2.3) 

By double angular brackets we denote average over symmehised broadening: 

((. )) = jm g"m)(. g"4 = gz(m) + gz(-m). 
-m 

We shall assume in what follows that initial pulses Qmtentials of the Zakharov-Shabat 
eigenvalue problem) are rapidly decreasing functions of time 

First we shall find the z-dependence of the monodromy manix T which we define in the 
usual way as 

(2.4) 

so that it satisfies the symmetry properties of'the auxiliary problem. Jost functions T+ are 
connected through 

T-(A, I )  = T+(A, t)T(A) I m A = O .  (2.5) 

Note that T, can be expressed in the fonn (Ti'), Ti')), where Ti'.') are two-component 

UI U(A)ui = U(-A) C(A) = U z U ( ~ ) o z  (2.6) 

vectors. The matrix U@, I .  z) is~found to satisfy two involution conditions, nameIy 

which meanS that the elements of the moncdromy mahix have the following properties: 

(2.7~) 

(2.7b) 
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It follows immediately from the symmelry relations (2.7b) that the zeros Aj of a@), i.e. 
bound states of the auxiliary scattering problem, arise on the imaginary A axis and as the 
pairs ( A i ,  -L) in the complex A plane 

Here ~ j ,  Im At and Re& > 0. Total number of zeros n is equal to IZ = nl + 2n2.  

discrete spec!” yj such that 
Through the zeros of a(A) we can define the so-called transition coefficients for the 

(2.9) 

(2.10) 

We can derive the ‘evolution equations’ of the scattering data by looking at the 
asymptotic behaviour in time of the relevant variables. As f + f c o  

j(o, I ,  z )  + ~ ( o ,  t)jji(o, z)E-’(o, t) 

with 

(2.1 1) 

E ( @ ,  I )  = exp (-$oru3) . 
From physical arguments it is evident that manicices ii(o, z) are not independent. By 

applying the monodromy matrix we find that 

(2.12) 

This result means that the ‘evolution equation’ of the monodromy matrix T ( A ,  z) is 

(2.13) 
d 
-T(A, z )  = ?+(A, z)T(A. z )  - ?’(A, z)?-(A, z )  
& 

where 

?i= l i i  E-’ (A , r )V(A , r , z )E(h . t )  ImA=O.  (2.14) 

An interesting observation can readily be made from (2.13): these equations lead to an 
t - r im 

explicit solution for the reflection coefficient r(A, z) 

(2.15) 
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in terms of the 'causal' contribution r&, z) and the 'spontaneous' contribution r&. z) 
such that 

r = r, + r, 

Here 

o - A - i O  2 [((w 
~ ( h ,  z) = hz - (2.16b) 

with the help of (2.15) and (2.16), equations (2.13) admit solutions for the scattering 
data in the form 

b(A , z )=  b(A,0)+--gs(A)6(A,0) 5-(A,z')exp(i,ij(A,z'))dz' 

(2 .17~)  

(2.17b) 

(2 .17~)  

l aZA 
2 

x exp(-ii(h, z) + Q-(A, 2)) 

~( 
a(h, 2) = a(A, 0) exp(-Q +(A. 2 ) )  

Yj(z) = vj(0) exp (-ix(Aj, z) + D(hj,  2)) 

where 

(2.18) 

and Q+(Q-) is the boundary value of Q on the real A axis from above (below). The solution 
of the Cauchy problem for the RMB system can now be reduced to solution of the matrix 
Riemann-Hilbert problem, 

G(A, t ,  Z) = G+(h, t ,  z)G-(h, f , z )  (2.19a) 

for the G-matrix 

G(h, t ,  Z) = ) = E@, t)G& z)E-'(A, t )  (2.19b) 
-bei\' 1 

with Imh = 0. Here G* are [4] 

(2.19c) 

and 

(2.196) 
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In order to establish in detail the connection between the solution Gi of the Riemann- 
Hilbert problem and that of the Rhm system, i.e. EO, z) and ,&, t ,  z) which follow from 
the initial pulse E&) and from the state of the medium at f = -CO as described by n-(o, z) 
and U- (0, z), we need h t  to derive a number of preliminary results. 

To begin with we first reformulate the factorization problem (2.19) such that the matrix 
G is expressed in the form 

G(A, t, Z) = E(A,  r)e-*+(*~z)6(A, z)e*-(A,z)E-'(A, t) (2.20) 

and the manices G+ are replaced by F&, r, z) which are defined as 

(221) 

Here *(A, z) is a piecewise analytical mahix function which is to be determined, and 
are its boundary values at the real A axis from above (+) and below (-). 

In terms of F&, z. z) the conjugation problem (2.190) takes the form 
- 

F - = F t G .  (2.22) 

By differentiating F;'F- = 6 with respect to z we find that 

(2.23) 

where V* are again the values in the limit ImA + 0' of matrix V defined in (2.26). In 
the limit f + --M and for Im A = 0, G* can be shown to have the asymptotic forms [4] 

d -  
-G = -F;'(V+ - V-)F- 
dz 

Combining this result with the asymptotic behaviour at z + -CO of (2.23), we find that 

On the other hand, when G in the form (2.20) is inserted into (2.19b), it follows that 

&A, z) = e*+(A,z)Go(A, z)e-*-@tz). (2.26) 

If 6 given by (2.26) is used in (2.25), furthermore we find that 

Thus far the only assumption we have made is that Y is a piecewise analytical function 
of A. In the following we shall seek in the form of a diagonal matrix 

'J'(Lz) = &g(@i(A, 2). h ( A ,  2)) . (2.28) 
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Equation (2.27) can easily be solved and we find 

(2.29) 

The result (2.29) can now be used to find the general solution of the RMB system with the 
chosen initial conditions. 

If we differentiate (2.22) with respect to time (G does not depend on time), we find that 
(Imh = 0) 

aF-  1 aF+ 
at a 1  

-FI = -FYI (2.30) 

On the other hand, the asymptotic behaviour in the limit jhl + 00 of maaices Fi can be 
shown to be 

(2.3 1) 

where I is the identity matrix and F t  are matrix coefficients. 
Application of Liouville's theorem to (2.30) together with (2.31) gives the result 

This result also means that 

u i E ( t ,  2) = [u3. F t l .  

By differentiating (2.22) with respect to z, we find that 

aF- 1 aF+ d -  -FI = - F ~ ' + F + - - G ( ~ , z ) F ~ '  aZ  a Z  dz 

(2.33) 

(2.34) 

The last teim in this equation can be considered as a jump on the real'axis of a piecewise 
analytica~ function Z F - ~ .  It follows~that this function must have the form 

Comparison with ( 2 2 )  of this result leads now to an expression for ;(U, I ,  z), namely 

and using the definitions (2.21) and the result (2.25) we tind further that 

(2.37) 
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The two results, (2.33) and (2.37), now provide the generaJ solution of the RMB system. 

briefly the trace formulae which will be needed later. 

A Rybin and J Timonen 

Before going into the Darboux transformation for the RMB system, we shall discuss 

The trace formulae generated by the spectral problem (2.1) with (2.2) take the form 

I ~ z c ~  k = l , 2 ,  ... (2.38) 

where the h ' s  are the Zakharov-Shabal functionals [4]. The fist three. of them are 

(2.39) 

The constants ck  can be found by expanding lna(A. z) for IA[ + M in terms of A-' 

czm = 0 

(2.40) 

From (2.39) and (2.40) the evolution equations of the ZakharovShabat functionals can 
be deduced sh'aightfonvardly 

(2.41) 

Finally it is worth pointing out that the RMB system is one of those systems [5] which 
cannot have other constants of motion than its spectrum. 

3. Darboux transformation for the RMB system 

In the derivation of the one-soliton (or a many-soliton) solution of the RMB system on an 
arbitrary background we shall use the Darboux transformation method which has proved to 
be [&8] a very elegant and powerful method. In this section we shall therefore formulate 
the Darboux transformation for the RMB system. To this end it is convenient to reformulate 
the auxiliary h e a r  problem (2.1) with (2.2) such that it is expressed in the following way: 

where $ = I - z, 7 = (YZ. We have also introduced above a diagonal spectral parameter 
matrix 

A = diag(Al, hz) (3.2a) 

and the corresponding matrix of eigenfimctions 

(3.26) 
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where ($&J, are solutions .of the linear system (2.1) with (2.2). 
We have likewise defined the matrices 

n &u - iw 
(3.34 

(3.36) 

~ 1 . 2  = diag ((A, F 0/2)-’, (h2 7 0/2)-’) . (3.3c) 

The idea of the Darboux transformation method is to construct a linear transformation 
(i.e. the Darboux transformation) for which the auxiliary linear problem (3.1) is covariant 
and to thereby determine the so-called dressing formulae. In this case we seek the Darboux 
transformation in the form 

N 

@ [NI = Sj@ AN-j so = I 
j=O 

(3.4) 

After straightforward but tedious algebra, which employs use of properties of the 
integrals of Cauchy type, we find 

E [ N ]  = E -2u”/A 
M1,dNI = e1,zMi.ze;: 

where E is a background electric field introduced in (1.2) and 

(3.52) 
(3.5b) 

U(*) = det(ua) A = det(A,,,) 

Here (U,!:) and (Anm) are matrices to be defined below. 
The transformations (3.5) describe N-soliton solutions for any choice of the 

‘background‘ variables E ,  n,  U and U. Equation (3.50) has also been reported in [81, 
where it was derived as a general result valid for any integrable system of the AKNS class. 

Note that the determinant of the aansformation ma&, det(xEo S,@ AN- j ) ,  of the 

related eigenfunctions with components $t = $(At) and @k = @(At). These eigenfunctions 
form vector solutions ( $ k ,  @k)T of the auxiliary linear problem (3.1). Not d l  of these 
solutions can be independent, however, because the involution conditions (2.6) must be 
satisfied. We find in particular that imposing (2.6) leads to conditions 

DXbOUX transformation (3.4) has 2N zeros ha (k = 1.2, . . . , 2 N ) ,  and that there are 2N 

@2A = -&-1 h k  = G2A-1 k2k = %lk-1 

@2k-1 = h k  &?k-1 = $% h - 1  = -A% 
(3.7) 

These conditions mean that we must choose eigenvalues and eigenfunctions which satisfy, 
e.g. 

&2t-l= $2-1 &-L= -&-I A 2 - i  = -&+I. (3.8) 
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The solution (3.5) of the RMB system can be expressed in terms of 2 N  x 2N matrices 
n. m = 1.2, .  . . , 2 N ,  whose elements are functions of the (A,,,"), (U,!:) and (6;;)) 

above eigenvalues and eigenfunctions. We find that 

m = 2k - 1 
k = l , 2 ,  ..., N (3 .9~)  

A,"-"* m =2k 
An, = 

k =  1.2, .... 2 N .  (3.9b) 

(3.94 

(3.9e) 

(3.98 

(3.10) 

where 8"') = det(62;)). With this the solution (3.5) is completely specified. In practice the 
way to proceed is to 6nd a solution of the original RMB system (e.g. the trivial solution with 
E = 0) and then find new solutions through iterative dressings by transformation (3.5). F a  
completeness we quote here the detailed form of the one-step Darboux transformations, i.e. 
(3.5) for N = 1 

D Er11 = E+4- 
A 

1 2 2  [ ( H Z  + D2 - p A )n - 2iHDv - wADu] 

[-2iHDn - (U2+ D2+&?A2)v+iwAHu] 

[wDn - ioHu - (Az + $02)uA] 

4 
(4A2 - &)A2 

4 
(4A2 - wz)A2 

4 
(4A2 - 02)A 

n[l] = 

u [ l l =  

u[1] = 

(3.11) 
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where 

4. Interaction of a pulse of light with an arbitrary background 

In this section we shall appIy the results of the previous sections to construction of the 
one-soliton solution of the RMB system on an arbitrary background. It is worth noting that 
in this section we are considering a background electric field which is rapidly decreasing 
for 111 + CO. This means that for the construction of the soliton solution we could also use 
the Riemann-Hilbert formalism developed in section 2 for E E LI(-co ,  00). But due to 
its pure algebraic nature, the Darboux transformation method does not require application 
of the full machinery of the inverse scattering method nor does it impose s!ict limitations 
on the functional classes of considered solutions. Thus the domain of applicability of the 
formulae of section 3 is rather broad and includes for example rational and periodic cases 
[9]. Hence om approach can easily be applied to background fields relevant in a variety 
of physical problems. Let us solve first the auxiliary linear problem (2.1) with (22) for 
arbiuary 'background' variables E ( t ,  2). n(r, z, o), u(f. z, o) and v(f. z, 0). 

The solution b, of (2.1) will be sought in the form 

= (S+/a)exp(-*)C (4.1) 

where *(A, z) is an integral of Cauchy type and is of the form of (2.28), S+ is defined by 
(2.19~5) and C is a constant matrix. 

The Jost functions &(A, I ,  z) which are related with the background fields can be 
found in the form of asymptotic expansions in terms of A-'. It is convenient to express 
these asymptotic expansions as 

where W(f, A) is an antidiagonal matrix which has for [AI -+ 03 an asymptotic expansion 

(4.3) 

It is plain that in order to comply with involutions (2.6); W(r, A) must be of the form 

W ( f ,  A) = GO, X)u+ -U(?, A)u- 

w(t, A) = -W(t ,  -L) 
(4.4) 

where 
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and w(I,A) is a function which also has an asymptotic expansion which can be found 
from (4.3). In order to find the one-soliton solution we apply next the one step Darboux 
transformation formula given in (3.11). For a soliton solution one must have the spectral 
parameter on the positive imaginary h axis, A = iK, K z 0. Let us suppose for simplicity 
that i K  does not belong to the discrete spectrum of the ‘background‘ field E(r, z )  which 
means that a ( k ,  0) # 0. The 6rst column = (e, +lT ofthe mauix function 0 appearing 
in (2.1) and (4.1) now takes the form 

A Rybin and J l7nwnen 

(4.5) 

Note that in (4.6) 6 is the phase of an ‘undisturbed‘ soliton in the absence of any 
‘background‘ field. If (4.5) is now used as the starting solution in the Darboux transformation 
(3.11), the one-soliton solution of the RMB system on the arbitmy background E is found 
to be 

*@ 
rlr2 - 42 

Er11 = E+4%- 

or in a more elaborated form, 

QI Qz E[l ]=E--  l+-+-+U cosh 2K x ( K K2 

where 
sinh’ x 

Q l  =E- 
cosh x 

The phase x is given by 

m 

4K -m 
= ~ ( f  - ro - z) i / sgn(r‘ - t)E2(r’) dr’ 

(4.7) 

(4.8) 

(4.9) 
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The second term on the right-hand side of expression (4.8) can be interpreted as a 
soliton permrbed by the arbibary background. Other terms in this cxpansion describe the 
soliton-background interaction. The phase velocity of the pulse is given by the condition 
dx=Oandreads 

Here the first two terms on the right side are the same as in the asymptotic expansion for 
the phase velocity of the free soliton, and the rest of the tems describe the influence of 
the background at the given spacetime point. In order to get an idea of how the solution 
looks like in the asymptotically far region, we shall work out its asymptotic behaviour at 
I, z -+ 00. We shall only consider the case of attenuation, i.e. n-(w, z) < 0. 

The limit f ,  z --f 00 is taken in such a way that the phase 6 of the undisturbed soliton 
remains constant. In this way we find 

exp(e12 + I(iK, 00)) 
Ci 

(4.1 1) 
@-a0 

@ -  a0 exp(-O/Z + Q(k, 00)) 
c2 

where 

(4.12) 

and Iz~-~(co) are limiting values of Zakharov-Shabat functionals for z --f CO. The 
asymptotic form of the soliton solution (4.7) is now 

This is the form of the soliton when it has traversed the whole space filled by the arbitrary 
background. From the analytical expression (4.13) we can then easily deduce the phase 
shift A@ experienced by the soliton due to the background 

The Mt term on the right-hand side of (4.14) is the conhibution of the usual 'causal' part 
of the radiation field (due to the initial condition E&)). The second term is the conhibution 
of the 'spontaneous' radiation field which has not been reported before. The asymptotic 
value of the reflection coefficient r(w, CO) can be expressed in terms of the boundary 
conditions. For simplicity we quote here its value in the case when the boundary values of 
polarization and inversion are independent of z, i.e. U- = u-(w), n- = n-(o) < 0: 

Many-soliton and breather solutions of the RMB system on an arbitrary background can 
be derived in essentially the same way as the one-soliton solution reported here, but the 
algebraic manipulations become rather tedious. Also in many experimental situations the 
density of solitons is so low that the independent-soliton approximation where soliton- 
soliton interactions can be neglected provides a valid description of the problem, and the 
one-soliton solution (4.7) is applicable. 
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