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Optical soliton in the presence of perturbations

A Rybin and J Timonen :
Department of Physics, University of Jyviskyld, PO BOX 35, 8F40351 Jyviskyld, Finland

Received 28 September 1992, in final form 12 May 1993

Abstract. [n the framewotk of the reduced Maxwell-Bloch (RMB) system we investigate in foeal
form the interaction of optical soliton with an arbitrary background field composed of causal
and spontaneous parts. A non-trivial phase shift of the soliton is also found.

1. Introduction

A long standing problem in nonlinear cptics has been that of properly understanding the
behaviour of an ultrashort pulse of light in a dispersive medium (see, e.g., [1]). Despite the
significant progress [1,2,3] made in this problem during the last two decades there are still
interesting questions concerning interaction of Jocalised excitations (solitons) with irregular
background disturbances (noise) or following the terminology of the theory of scattering, the
interaction of soliton with continuum spectrum. Such an interaction is of general physical
significance. In nonlinear optics in particular these processes are of great importance in the
theory of optical systems for information transfer for example, where noise can interfere with
localized information bearing signals., From a formal point of view such noise is a solution
of the considered soliton bearing nonlinear equation. Thus the problem of interaction is
that of nonlinear superposition of soliton and noise. The approach we report in this work is
applicable to any nonlinear system as far as the system is completely integrable. This in a
pragmatical sense means that the considered nonlinear system is the compatibility condition
of an associated linear system (zero curvature condition). Technically our approach consists
of constructing a solution of this linear system corresponding to arbitrary background fields.
This solution is found in the form of an asymptotic series with respect to the specitral
parameter. Given this solution we can then apply a dressing procedure (in our work the
Darboux transformation method) to construct a nonlinear superposition of a soliton and the
background in the local form, i.e. at a finite spacetime point. We may think of our approach
as a variant of perturbation theory in the sense that perturbation of the exact solution is not
accounted for by an extra term in the nonlinear equation but by the arbitrary background.
A small parameter of this perturbation theory is the reciprocal of the spectral parameter. In
order to exemplify the ‘general method we have chosen to consider a system describing an
interaction of an electric field with an active medium composed of two-level atoms.

We assume that the dispersive medium consists of two-level atoms with resonance
frequency e,. Usually [2,3] the interaction of light with a two-level medium has been

described in terms of the Maxwell-Bloch (MB) equations

& = (p) pt +2inp = Ne N =.-~:1‘7(F:p +&5) (1.1)
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for the complex, slowly varying amplitudes &, p and A of the electric field, polarization
and inversion, respectively. Here 7 = Qi(t — x/¢), € = Sux/c, S = 2wnowou® /R,
= {w — wp)/28, ng is the density of atoms in the active medium, g is the dipole
momentum matrix element of the two-level atoms, O is the complex conjugate of O and
= ff"m g101){(-)dn an average over inhomogeneous broadening. Subscripts denote
partial derivatives.

It would be better, however, to work directly with dynamical variables including their
rapidly oscillating parts, and therefore we shall adopt here the method described in [1]. This
method which leads to the so-called reduced Maxwell-Bloch (RMB) sysiem, has also other
advantages over the usual MB system (see [1]). The RMB system is described by equations

Uy = —wv v, =awut+ En n,=—Ev E; + E;, = a{wv) (1.2)

where E is a real electric field, « is the resonance frequency, n(w, ¢, z) the density of
excited atomns in the dispersive (actve) medium (e, mversion) and u{w, i, 2), viw, t,2)
are the two components of the polarization. The symbol {- fo 83(ew)(-) dew denotes an
average over inhomogeneous broadening. Also, z = x/c and o = dwngu?/h.

The problem to be solved is defined by specifying the initial and boundary conditions
for the set of equations (1.2). A suitably general formulation of a similar problem was
given in [3].

At 1 = —oo0 the active medium is assumed to be in a state with a given inversion
n(w, 1 = —00, z) = n.(w, z) and polarization o (w, 1 = —00, 2) = 0_(w, z). An ultrashort
optical pulse is then introduced such that its time dependence at z = 0 is specified,
E(r, z = 0) = Ep(r). The radiation field in the medium is therefore a nonlinear superposition
of two parts, the ‘spontaneous’ part induced by the initial polarization at ¢ = —co, and the
‘causal’ pari induced by the ultrashort optical pulse. The interaction we shall study in detail
is that between an optical soliton and an arbiwrary background fieid which consists of the
two parts described above,

In section 2 we shall first re-examine the results of [3] usmg the formalism of the matrix
Riemann~Hilbert problem in distinction from [3] where the Gelfand-Levitan formalism was
used. The advantage of the present approach is that we can restore all components of the
solution including those which are needed to describe the quantum system. Let us comment
on this point in more detail. In the case when either the RMB system or the MB system has a
spectral line of final width, the components of the density matrix related to the solution for
the electric field cannot be restored from the nonlinear system itself due to inhomogeneous
broadening. In this respect the MB system is even worse than the RMB system because
exact resonance corresponds 1o the choice 1 = 0 and g;(n} = () in the.MB system, and
w = wp and ga{w) = 3(w — wn) in the RMB system. Thus for the MB system it is more
difficult to trace the points where frequency and inhomogeneous broadening factors should
be inserted while deducing the correct form of the solution from a particular solution found
for the sharp line case. This observation provides the motivation for deriving formulae for
all components of the solution. Furithemore, it is interesting to see how the matrix Riemang--
Hilbert formalism works in'the case of a nonlinear system with a singular dispersion relation
which is the case for the RMB system. Of course, up to minor modifications our analysis
is completely applicable to the MB system as well. The second objective of section 2 is to
clarify the analytical structure of the solution of the auxiliary linear system in the case of
arbitrary background fields (coefficients of the linear probiem). This solution will then be
used section 4 to construct the one-soliton solution on an arbitrary background.
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2, General solution of the reduced Maxwell-Bloch system

The set of equations (1’.2)- is the compatibility condition for the (anxiliary} linear problem

¢, =Ud ; (2.1a)
&, =V | .15
with
it i
U= —30'3 + 550’1 . (2-2‘1)
o I - ‘
V=-t—iZf{o-f— : 2
i S o2
where 0;, j = 1, 2,3 are the usual Pauli spin matrices, A is the spectral parameter and
ﬁ:(’f Q) 0=u—iw. @2.3)
0 -n

By double angular brackets we denote average over symmetrised broadening:

()= f FOde g = ga@) + ga(—).

We shall assume in what follows that initial pulses (potentials of the Zakharov—Shabat
eigenvalue problem) are rapidly decreasing functions of time

f [ Eoe)| dr < co.

o0

First- we shall find the z-dependence of the monodromy matrix T which we define in the
usual way as T - |

a(h,z) —b(r, z)) 24

TG.2) = (b(l, 7) a7

so that it satisfies the symmetry properties of the auxiliary problem. Jost functions T, are
connected through

T, ) =T, 0TR) ImA=0. . (2.5)

Note that T can be expressed in the form (T(U, 7%}, where 7.)? are two-component
vectors. The matrix U(A, ¢, 2) is-found to satisfy two involution conditions, namely

e1UW)o = U(—4) Uy =aU)er . ' (2.6)
which means that the elements of the monodromy matrix have the following properties:

B\ = —b(—1) Imi=20 (2.743)
a() = a(—1i). 2.75)
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It follows immediately from the symmetry relations (2.75) that the zeros A; of a(A), i.e.
bound states of the auxiliary scattering problem, arise on the imaginary A axis and as the
pairs (Ag, —Az) in the complex A plane

Aj = ik; J=12,....m
_ (2.8)
Aegn, = —Ap k=m+1,...,n1+n;.

Here «;, ImA; and Re g > 0. Total number of zeros n is equal o 1 = ny + 2ns.

Through the zeros of a(A) we can define the so-called transition coefficients for the
discrete spectrum y; such that

TP ) =9 TP, Ay j=1...,n. (2.9)
They are readily found to satisfy
Y= —~¥ i=12,....m

2.10)
Ve = —Vriny k=ny,....n+na.

We can derive the ‘evolution equations’ of the scattering data by looking at the
asymptotic behaviour in time of the relevant variables. As ¢ — Zco

Hw. 1, 2) = E(w, i (w, E o, 1)
with

,ai(&), Z) = (n:l:(wv Z) O-:E(w» Z) )

Gx{w,z) —nxlw,z) (2.11)

E(w, 1) = exp (—3iwios) .

From physical arguments it is evident that matrices 5= (w, z) are not independent. By
applying the monodromy matrix we find that

ne = n_(af* — \b|%) — @aba_ — abo_

(2.12)
o+ =2abn- +a’o_ — b5
This result means that the ‘evolution equation’ of the monodromy matrix T'(A, z} is
%T(x, 2y = Vo, )T 2) — T, DV_(A, 2) (2.13)
where
Vi = tihgm E7'A, VA, 1, D)EQR, 1) Imi=0. 214

An interesting observation can readily be made from (2.13): these equations lead to an
explicit solution for the reflection coefficient r (X, 2)

B\, 2)

r(h, ) = 202 (2.15)
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in terms of the- ‘causal’ contribution r.(A, z) and the ‘spontaﬁeous’ contribution ry(A, 2)
such that

r=re +—rs
relh, 2} = r(, Oy exp(ix (v, 2)) 2.162)
ro(h, z) = ?gsm f : o-(h, 2 exp (ix(d, 2) —ix(A, 2") dz'.
0 ! S
Here
a [* n- .
x(A, 2Y = Az — 5]; «wm»d}.’ . (2.165)

With the help of (2.15} and (2.16), equations (2.13) admit solutions for the scattering
data in the form

B(A, 7) = (b(l, 0) + -m;—}”gS(x)a(x, 0) jﬂ 507 exp(iz (A, z’))dz’)

x exp(—ix(r, z) + Q_(X, 2)) ) ) 2179
a(d, z) = alh, Oyexp(—824 (A, 2)) (2.17p)
7i(@) = y;(Oyexp{—ix(;, 2) + R, 2)) 17¢)
where
_ b i 1 14 |r(ew, D)2 )
Q=i Lo I"(1 +|rio, 0)12) @19

and £2, (2.} is the boundary value of 2 on the real ) axis from above (below). The solution
of the Cauchy problem for the RMB system can now be reduced to solution of the matrix
Riemann-Hilbert problem,

G(h t,2) =Go(r 8, 2)G(A, 1, 2) (2.19a)
for the G-mafrix -
1 —beiM
—pe 1

G(r, t,2) = ( ) = EQ\, Go(h, Z)E7 (A, 1) (2.19b)
with Im A = 0. Here G,. are [4]

G(X 8,2y =8_(h 8, YETT LD

(2.190)
G+(h, 1,2) = a(r, 2)E(h, )87, ¢, 2)
and
5. = (19, %)
(2.19d)

§, = (19, 79).
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In order to establish in detail the connection between the solution G of the Riemann—
Hilbert problem and that of the RMB system, i.e. E(z, 2) and S(w, ¢, 2) which follow from
the initial pulse Ey(¢) and from the state of the medium at ¢ = —co as described by n{w, z)
and o (e0, 2), we need first to derive a number of preliminary results.

To begin with we first reformulate the factorization problem (2.19) such that the matrix
( is expressed in the form

GiA, 1, 7y = E(h, De” 3250, eV E(0, 5 (2.20)
and the matrices G are replaced by F.(}, r, z) which are defined as

Fp=GEQ, Dexp(—¥ (A, 2))
(221)
F_=G_E@R,texp(—TV_(A,z)) .

Here W (A, z) is a piecewise analytical matrix function which is to be determined, and V.
are its boundary values at the real A axis from above (4+) and below {—).
In terms of Fy.(A, ¢, z} the conjugation problem (2.19g) takes the form

F_=F.G. (222
By differentiating F;'F_ = G with respect to z we find that

;—zé =—F 1 (V, - V.)F. (2.23)

where Vi are again the values in the limit ImA — 0* of matix V defined in (2.25). In
the limit t — —oc and for ImA =0, G can be shown to have the asymptotic forms [4]

5 =ikt
G;l=(1/“(’° (B2)/a()e ) ot

0 1
o o @24
a
G-= (—b(x)cm 1) oD

Combining this result with the asymptotic behaviour at 1 — —oo of (2.23}, we find that

—G - -Eﬂg AR (_, e G- b"‘) -t (229)
ac_-+bn_ —n_

On the other hand, when  in the form (2.20) is inserted into ¢2.195), it follows that
G, 2) = eV Gy, 2)e V-0 (2.26)
If G given by (2.26) is used in (2.25), furthermore we find that

d amh ( n. ac. +bn_ )

—¥. .G G ——G—-'Ll’_=—-----~-—-——s 2.27
o T o+ —Go ) V3] 36 + b e (2.27)

Thus far the only assumption we have made is that W is 2 piecewisc analytical function
of A. In the following we shall seek ¥ in the form of a diagonal matrix

Wk, z) = diag (Y1 (A, 2}, ¥2(2, 2)) . (2.28)
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Equation (2.27) can easily be solved and we find

e 7) = —ﬂz+ =2 ((w i ))dz’

w—A

» dz’ + Q(*, z) (2.29)

The result {2.29) can now be used to find the general solutmn of the RMB system w1th the
chosen initial conditions.

If we differentiate (2.22) with respect to time (G does not depend on time}, we find that
(ImA =0)

aF_ __, OF. __,
—_— =—F_". 2.3
ar - 5 Y ) _ (2.30)
On the other hand, the asymptotic behaviour in the limit {»] - oc of matrices F. can be
shown to be
FE 1 ir
Fi= (I -+ T+0(|l|2)) ex_p{—z(:—z)cg] 231

where I is the identity matrix and F= are matrix coefficients.
Application of Liouville’s theorem to (2.30) together with (2.31) gives the result

U = —1iroy + Lifos, FET. (2.32)
This result also means that —
o1 E(t, 2) = [o3, FE]. | (2.33)
By differentiating (2.22) with respect to z, we find that

AF_ ' 3F+
— F"
az dz
The last term in thlS equanon can be considered as a jump on the real axis of a piecewise
analytical functmn F -1, It follows that this function must have the form

2t +F+—G(A DHF . — (2.34)

oF o iE 1 [®. Fudw)iG)F (o)
at TR T ) w—X - @)

Comparison with (2.25) of this result leads now 0 an expression for 5{w, ¢, 7), namely

plo,1,2)=— —2——- GF' | B ' (2.36)
QT LOg (m) :

and using the definitions (2.21) and the result (2.25) we find further that

i " ac_ +bn_ ) -

5= 23
P (&&_+bn_ —n_ @
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The two results, (2.33) and (2.37), now provide the general solution of the RMB system.
Before going into the Darboux transformation for the RMB system, we shall discuss
briefly the trace formulae which will be needed later,
The trace formulae generated by the spectral problem (2.1} with (2.2) take the form
L =0 k=12 ... {2.38)

where the I;’s are the Zakharov-Shabat functionals [4]. The first three of them are
1 % 2 1 o 1 4

h=- d E Ih=10 Ig:-——f dt(EE”-!-ZE). (2.39)
4 —00 4 —o0

The constants ¢ can be found by expanding Ina(h, z) for || = oo in terms of A~

62"1 = O
2i 1] B]'H‘Lz _
Comm1 =5 {Z(il{_,')zm_l - > et —Af'"-l)} ' (2.40)
M= j=m+1

1 o0
+——-f dow o™ (1 +Ir(w, 2)7) m=12....
2% o

From (2.39) and (2.40) the evolution equations of the Zakharov—Shabat functionals can
be deduced straightforwardly

d [2.4 w?.m—l 2 - _
‘d—zlgm_l = Z((W(eri na +]‘0_ +r0'_)))- (2.41)

Finally it is worth pointing out that the RMB system is one of those systems [5] which
cannot have other constants of motion than its spectrum.

3. Darboux transformation for the RMEB system

In the derivation of the one-soliton {or a many-soliton) solution of the RMB system on an
arbitrary background we shall use the Darboux transformation method which has proved to
be [6-8] a very elegant and powerful method. In this section we shall therefore formulate
the Darboux transformation for the RMB system. To this end it is convenient to reformulate
the auxiliary linear problem (2.1) with (2.2) such that it is expressed in the following way:

$g = U1® A + Up® 3.1)
P = (M; QP + My O Py) (3.2)

where & =1 —z, * = «z. We have also introduced above a diagonal spectral parameter
matrix

A = diag{Ag, A2) 3.2a)
and the corresponding mairix of eigenfunctions

® = (%(M) ¢2(—’Lz))

3.2b
IR 325
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where (¥;(2;), ¢;(%;))" are solutions of the linear system (2.1) with (2.2).
We have likewise defined the matrices

Uy =1Em U = —ios (33&)
iwf{ 'n 41— fw ,
Mig=— 3.3b
127 g (:I:u +iw —-n ) (3.3
Py =diag{(\ F /27, (o Fe/2)7Y). (3.3¢)

The idea of the Darboux transformation method is to construct a lingar transformation
(i.e. the Darboux transformation) for which the auxiliary linear problem (3.1} is covariant
and to thereby determine the so-called dressing formulae. In this case we seek the Darboux
mransformation in the form

N
O N]= Z S;® AN Sa=1. (3.4)
j=0

After straightforward but tedious algebra, which employs use of properties of the
integrals of Canchy type, we find

EIN]= E — 29 /A (3.5a)
Ma[NT = Qz,zMLzQ[i (3.5b)

where E is a background electric field infroduced in (1.2) and

N
o1= Y (w/2Vs;
j=0
(3.6)
02(w) = g1 (—w)

2® = det(v(®) A =det(A,n).

Here (v2) and (A, are matrices to be defined below.

The transformations (3.5) describe N-soliton squuons for any choice of the
‘background’ variables E, r, u and ». Equation (3.3a) has also been reported in [8],
where it was derived as a general result valid for any integrable system of the AKNS class.,

Note that the determinant of the transformation matrix, det(} "}, S;® AN=7), of the
Darboux transformation (3.4) has 2N zeros A, (k= 1,2,...,2N), and that there are 2N
related eigenfunctions with components Y = 4 (A) and qbk ¢ (re). These eigenfunctions
form vector solutions (¥, ¢z)* of the auxiliary linear problem (3.1). Not all of these
solytions can be independent, however, because the involution conditions (2.6) must be
satisfied. We find in particular that imposing (2.6} leads 1o conditions

Yo = —Pa-1 Box = Y Aog = Aapey
Va1 = o Paw-1 = Y Agke] = —Ak.

These conditions mean that we must choose eigenvalues and eigenfunctions which satisfy,
e.g.

67

Va1 = Yo b1 = —(521;-1 Mpmt = —hpet - (3.8)
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The solution (3.5) of the RMB system can be expressed in terms of 2N x 2N matrices

(Amn), (v} and (884 n.m=1,2,...,2N, whose elements are functions of the
above eigenvalues and eigenfunctions. We find that

ANEr, m=2k~—1
App = k=12,....N (3.94)
aN-kg m=2k
Apm m#£k
=1 k=12,...,2N. (3.98)
Ap Wan m==k
The elements of the four matrices (859 i,k =1,2, are found to be
[ (Y — /) ¥ m=1
ﬁg’:] = A,zr_k(i)n m="2k (3.9(.')
[ AV (/2 =AY m=2i-1
S’ m=2k—1
500 = { Al m=2 (3.9d)
Y (/2 =20 ¢ m =2j
AN, m=1
800 = 10 *e, m =2k (3.9¢)
AN (/) =M m=2j-1
[ AN =Ry, m=2k—1
880 = 1 (AN — (/") ¢ m=2 (39
LA T (/Y =2 e m=2)

withk=1,2,..., Nand j=1,2,...,N.
The solution for the matrix ¢; (@) can row be written in the form

1 ;e —(N—LN=D/2 ¢ 30D g0
Q1=“Z(§) ( 3GD 5(22}) (3.10)

where 500 = det(5{¥). With this the solution (3.5) is completely specified. In practice the
way to proceed is to find a solution of the criginal RMB system {e.g. the trivial solution with
E = 0) and then find new solutions through iterative dressings by transformation (3.5). For

completeness we quote here the detailed form of the one-step Darboux transformations, i.e,
35 forN=1

D
Effl=FE+4— -
[1] +4<

4
n[l}= m[(m + D* - Lo’ AYn — 21 HDv — A D]

4 (3.11)

'D[l] = m[—ZlHﬂn - (H2 + D2 -+ %cozAz)v -+ ir:oAHu]

4
1l — —i S R
ul1] (412—-502)&.{@[)” fwHy — (A" + 30 Al
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where

H=)My"+¢") D=Dy¢  A=yp?-¢°
V=% ¢=—¢ A=-i. ’

4. Interaction of a pulse of light with an arbitrary background

In this section we shall apply the results of the previous sections to construction of the
one-soliton solution of the RMB system on an arbitrary background. It is worth noting that
in this section we are considering a background electric field which is rapidly decreasing
for [f| — o¢. This means that for the construction of the soliton sclution we could also use
the Riemann—Hilbert formalism developed in section 2 for £ ¢ Li(—o¢, o). But due to
its pure algebraic nature, the Darboux transformation method does not require application
of the full machinery of the inverse scattering method nor does it impose strict limitations
on the functional classes of considered solutions. Thus the domain of applicability of the
formulae of section 3 is rather broad and includes for example rational and periodic cases
[9]. Hence our approach can easily be applied 1o background fields reievant in a variety
of physical probiems. Let us solve first the auxiliary linear problem (2.1) with (2.2) for
arbitrary *background’ variables E(z, z), n{1, z, @), u(t, z, @) and v(¢, z, ).
The solution < of (2.1} will be sought in the form

@ = (S, /a)exp(—W)C 4.1)

where W(A, z) is an integral of Cauchy type and is of the form of (2.28), §. is defined by
{2.19d) and C is a constant matrix.

The Jost functions Tw(X, 7, z) which are related with the background fields can be
found in the form of asymptotic expansions in terms of A~!. It is convenient 0 express
these asymptotic expansions as

i

To(A )= +W(, 1) exn(~%crst +%
+oo

Ea W dt’) (4.2)

where W(z, &) is an antidiagonal matrix which has for |A| — o0 an asymptotic expansion

We =Y Mj{‘f’)

r=1

+O(AI™™). (4.3)

It is plain that in order to comply with involutions (2.6), W(z, A) must be of the form
WA, &) = w(t, Aoy — wit, Ao-
) 4.4)
w(t, A) = —w(t, —A)

where

g .
ox = 5(01 L igy)
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and w{, A} is a function which also has an asymptotic expansion which can be found
from (4.3). In order to find the one-soliton solution we apply next the one step Darboux
transformation formula given in (3.11). For a soliton solution one must have the spectral
parameter on the positive imaginary A axis, A = ik, « > 0. Let us suppose for simplicity
that i« does not belong to the discrete spectrum of the ‘background’ field E(t, z) which
means that a(ix, 0) # 0. The first column &'V = (3, ¢)T of the matrix function  appearing
in (2.1) and (4.1) now takes the form

1 _ . .
¥ = s Crexpx + cxb ik, ) expxa)
1 @.5)
¢ = m ("Clw(m; t) exp X1 + CzerXﬂ
where
— 2 —_ i f‘ E(tf) (- I") dp’
XI - 2 2 —0 }U IIC’
8 O .
X2 = -5 Ef EQ ya(—ik, 1) de” + S2(ik, z)
. (4.6)

Hon(w, 2"
9=;c(t—to—-z+aj; (W)dzf)

N 2 S T N bl 4 % i
ﬂ(uc,z)—ﬂj; de (w* + %) m__—1+lr(w,0)12'

Note that in (4.6) 6 is the phase of an ‘undisnxbed’ soliton in the absence of any
“background’ field. If (4.5) is now used as the starting solution in the Darboux transformation
(3.11), the one-soliton solution of the RMB system on the arbitrary background E is found
to be

Ve

Efl] = E +4ik——> r— @7

or in a more elaberated form,
2k Q1 O
E(l]=E~ =2 4.8
1) mhx( L2 +o( )) @8
where :
sinh® y E? 4
& cosh x Q=3 ( ot x) Eisinti.

The phase y is given by

y=0-— %f E{tNYwlic, tYdr' + %f E(Yin(—ix, th dr' — (i, 7)

-0 t
l 00
=kt —tp—2) 4+ — [ sgn(t’ — NE(¢)dr
dr Jooo

R P €
km Jo 1+ lr(w, 02

e [* , 1
+2 [one +o(;5) . 49)
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The second term on the right-hand side of expression (4.8) can be interpreted as a
soliton perturbed by the arbitrary background. Other terms in this cxpansion describe the
soliton-background interaction. The phase velocity of the pulse is given by the condition
dx = 0 and reads

dz 1 3 1 1

= =1+ 2(w )= eyl i) Ezdt’—mEz—i—O(F). (4.10)
Here the first two terms on the right side are the same as in the asymptotic expansion for
the phase velocity of the free soliton, and the rest of the terms describe the influence of
the background at the given spacetime point. In order to get an idea of how the solution
looks like in the asymptotically far region, we shall work out its asymptotic behaviour at
t, z — oo, We shall only consider the case of attenuation, L.e. n—(w, z) < 0,

The limit 7, z — oo is taken in such a way that the phase & of the undisturbed soliton
remains constant. In this way we find

v~ a( 0) exp(8/2 + I (ix, 00))
e 4.11)
¢~ 2 0) exp(—0 /2 + S (ix, co))
where
I(i, 00) = Z( Yl L '2”‘;;(_?@ : (4.12)

m=1
and [o,-1(c0) are limiting values of Zakharov-Shabat functionals for z — co. The
asymptotic form of the soliton solution (4.7) is now

. o0 2 ~1
E[1] ~ —ZK{cosh(G — Inacic, 0) — f—f deo 24 +lr("” ool ))]
T Jfy @? + k2
This is the form of the soliton when it has traversed the whole space filled by the arbitrary
background. From the analytical expression (4.13) we can then easily deduce the phase
shift A® experienced by the soliton dug to the background
deo In(l + [r(m oo)l,z)
w? + «?

The first term on the right-hand side of (4.14) is the conlnbution of the usual “cansal’ part
of the radiation field (due to the initial condition Eq(¢)). The second term is the contribution
of the ‘spontanecus’ radiation field which has not been reported before. The asymptotic
value of the reflection coefficient r(w, co) can be expressed in terms of the boundary
conditions. For simplicity we quote here its value in the case when the boundary values of
polarization and inversion are independent of z, i.e. - = o.(w), n-=n_(w) < O:

(4.13)

A® = —Ina(ic, 0) — & f 4.14)
7 Jo

2 2
Ir(w, )2 = ﬁ’;_“’gS(m)a_(w) { Eg—wgS(m)n_@)
’ -1
[w-—-—?:’f dof g(e )"’” (‘;’))} } . (4.15)

Many-soliton and breather solutions of the RMB system on an arbitrary background can
be derived in essentially the same way as the one-soliton solution reported here, but the
algehraic manipulations become rather tedious, Also in many experimental situations the
density of solitons is so low that the independent-soliton approximation where soliton—
soliton tnteractions can be neglected provides a valid description of the problem, and the
one-soliton solution (4.7) is applicable.
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